skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wen, Aiwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol‐histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2‐dependent C−S bond formation catalyzed by non‐heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competentS=1 iron(IV) intermediate supported by a four‐histidine ligand environment (three from the protein residues and one from the substrate) in enabling C−S bond formation in OvoA fromMethyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non‐heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C−S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure‐function relationship of high‐valent iron intermediates supported by a histidine rich ligand environment. 
    more » « less